

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Running
Containers

in Production

Sysdig Special Edition

by Jorge Salamero Sanz,
Eric Carter, and
Knox Anderson

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Running Containers in Production For Dummies®,
Sysdig Special Edition
Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2018 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the Publisher. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates
in the United States and other countries, and may not be used without written permission.
Sysdig and the Sysdig logo are trademarks or registered trademarks of Sysdig, Inc. All other
trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.
com/go/custompub. For information about licensing the For Dummies brand for products or
services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-52110-5 (pbk); ISBN 978-1-119-52105-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. Some of the
people who helped bring this book to market include the following:

Contributing Writer: Emily Freeman

Development Editor: Scott Lowe

Project Editor: Martin V. Minner

Executive Editor: Steve Hayes

Editorial Manager: Rev Mengle

Business Development Representative:
Karen Hattan

Production Editor: Mohammed Zafar Ali

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Table of Contents

Introduction. 1
About This Book. 1
Icons Used in This Book . 2

CHAPTER 1:	Understanding Containers and
Orchestration Platforms. 3
Moving to Microservices. 5
Comparing Orchestration and

Management Tools. 6

CHAPTER 2:	Building and Deploying Containers. 11
Building Your Images. 12
Shipping Container Images 13
Implementing CI/CD/CS . 14

CHAPTER 3:	Monitoring Containers. 17
Understanding Container Visibility

Challenges. 18
Collecting Metrics. 19
Aggregating and Segmenting Metrics. 21
Monitoring the Environment Layers. 22
Designing a Monitoring Process 26
Dashboarding and Exploring. 30
Alerting . 30
Troubleshooting: Going Beyond Monitoring. 31
Choosing a platform. 32

CHAPTER 4:	Securing Containers. . 33
Identifying Common Threats. 34
Handling Configuration and Compliance. 39
Ensuring Run-Time Security. 40
Working with Forensics and Incident

Response . . 41

CHAPTER 5:	Ten Container Takeaways. 43

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

1
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Introduction

Many people consider containers a hot new tech-
nology that they need to jump on. In reality,
however, containers aren’t new at all. They’re

actually pretty old and have their origins dating back as
far as the introduction of the chroot system call in 1979.

Over the years, there have been other attempts to imple-
ment container-like constructs. Docker finally hit the
mark in 2013 with the introduction of a standardized
container format. Since then, containers have enjoyed
widespread adoption because of the robust Docker eco-
system and the popularity of Kubernetes.

Although many have embraced containers, others have
struggled with transitioning mature codebases and
enterprise products into the new ecosystem. Many orga-
nizations that have moved them into production have
done so haphazardly and in ways that don’t enable best
practices-based security.

About This Book
Running Containers in Production For Dummies, Sysdig Spe-
cial Edition, explores the benefits of containers and the
challenges of deploying containerized applications in

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

production. It provides an overview of the container eco-
system as well as the development processes and archi-
tectures that complement it. This book covers

»» Building and managing container environments

»» Creating a CI/CD/CS pipeline

»» Monitoring containers

»» Securing containers

Icons Used in This Book
This book uses the following icons to call your attention
to can’t-miss information.

Paragraphs marked with the Remember icon
are particularly important for you to keep in
mind.

Don’t miss the information marked with the
Tip icon — it can make your life easier.

We use this icon to introduce something
that’s particularly technical in nature.

2

3
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Understanding
Containers and
Orchestration
Platforms

Containers may be all the rage today, but they aren’t
a new development. They’ve actually been around
since the late 1970s. It wasn’t until Docker debuted

its container platform in 2013 that users found the

Chapter 1

IN THIS CHAPTER

»» Moving to microservices

»» Comparing orchestration
platforms

4
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

technology mature enough to run applications for pro-
duction workloads.

Docker did something that hadn’t been done before. The
company’s approach enabled a containerized application
to run across different operating systems by packaging
dependencies — the software and libraries necessary
to operate a workload — to give developers a way to
code applications and easily move them from a develop-
ment laptop into a test environment and, finally, into
production.

WHAT DO
CONTAINERS DO?

Containers are a type of operating system vir-
tualization that isolates resources — CPU,
memory, disk, or network — while allowing
isolated workloads to run on the same host.
They hold software binaries and libraries —
everything required to run an application. You
can think of containers as lightweight virtual
machines without the overhead of a full oper-
ating system getting in your way, meaning that
they can be far more agile and enable far more
workload density than traditional approaches
to virtualization.

5
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Moving to Microservices
Before containers came on the scene, most enterprise
applications were unmoving monoliths that were being
crushed under their own weight. These applications con-
sisted of one massive code base that contained all of the
functionality required to make the application do the
company’s bidding.

The monolithic approach had some down-
sides, most notably around how to grow a
workload environment as business needs
demanded. Sure, you could scale your hard-
ware resources in a never-ending fashion,
but easily scaling the application was some-
times a tall order.

Enter microservices.

In a microservices world, applications are no longer
maniacal, monolithic monsters devouring hardware
resources. Instead, applications are smashed apart and
decomposed into loosely coupled, independently deploy-
able application services that talk to each other, typically
using standard protocols such as HTTP or GRPC. Instead
of one massive application to deal with, you have tons of
little, tiny ones that are designed to work in harmony and
meet complex business needs.

6
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

No longer are you at the mercy of the mono-
lith. Your shiny new microservices model
enables a “scale-out” architecture where
additional process instances can be started to
keep pace with load — all of which interact
with each other over the network.

But, what does this microservices approach have to do
with containers, anyway? Containers happen to be ideally
suited to these loosely coupled services because contain-
ers simplify scaling and ongoing deployments.

Comparing Orchestration
and Management Tools
Automating the operation of hundreds, if not thousands,
of containers in a cluster across multiple hosts requires
an orchestration tool. As the name suggests, orchestration
tools assume the role of an orchestra conductor by man-
aging and coordinating all of the services that comprise
the environment. This means managing how hosts, con-
tainers, and services are created, started, stopped,
upgraded, connected, and made available.

Many orchestration solutions are available, with options
ranging from homegrown systems, to open source pack-
ages, to commercial products. This section introduces
five popular container orchestration and management
tools.

7
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Kubernetes
Originally created by Google as a mechanism for deploy-
ing, maintaining, and scaling applications, Kubernetes —
K8s or Kube, for short — was donated to the Cloud Native
Computing Foundation in 2015 and is now available as an
open source project.

Kubernetes simplifies the orchestration of
containers across multiple hosts by manag-
ing the scale and health of nodes. It orga-
nizes containers into groups referred to
as pods to streamline workload scheduling.
Auto-placement, auto-restart, and auto-
replication enable your applications to self-
heal to ensure uptime for the services they
control. Kubernetes ably performs rolling
upgrades of an entire cluster without applica-
tion or service downtime.

Best of all, as a popular open source project, Kubernetes
shows no sign of slowing down. With a large community
of project contributors, Kubernetes sits at the very heart
of a fast-growing ecosystem.

OpenShift
OpenShift is not a stand-alone orchestration platform.
Rather, OpenShift is Red Hat’s enterprise container
application platform. It’s built around Kubernetes and
extends that platform’s capabilities. OpenShift inherits

8
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

all the upstream capabilities of Kubernetes but also
enhances the enterprise user experience by adding fea-
tures to enable rapid application development, easy
deployment, and lifecycle maintenance.

If your team is looking for a fully featured orchestra
tion platform for developers that includes additional
enterprise-specific features such as support, OpenShift
is a good choice.

Docker Swarm/Docker Enterprise
Docker Swarm is Docker’s native host clustering and
container scheduling tool. Docker includes Swarm with
Docker Engine and, unlike other solutions, doesn’t
require additional components to operate.

The initial setup is straightforward. Given its simplicity,
Docker Swarm works great in small environments but
has also been successfully scaled for large environments
with up to 30,000 containers. With Docker Enterprise
Edition, you can deploy apps using both Docker Swarm
and Kubernetes within the same platform.

Amazon ECS, Fargate, EKS
Amazon Web Services (AWS) provides several services
that orchestrate containerized applications. Amazon
Elastic Container Service (ECS) allows you to run and
scale Docker-based applications on AWS EC2 instances.

9
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

ECS also supports Fargate, which allows you to run con-
tainers without having to manage the servers that com-
prise the cluster. With ECS, a built-in scheduler can be
used to trigger container deployment based on resource
availability and demand.

Amazon ECS is ideal for small teams that rely
on AWS to manage their infrastructure and
require tight integration with other AWS
services.

Amazon also offers a Kubernetes-specific service, Elastic
Container Service for Kubernetes (EKS), which lets you
run Kubernetes on AWS without needing to install and
manage clusters. This solution is best for those who want
to use the Kubernetes features but prefer a managed
service.

Apache Mesos, Mesosphere
DC/OS, and Marathon
Apache Mesos is both a cluster manager tool and a host
operating system. Mesos has its own container format
but also supports Docker containers.

Mesosphere developed its DC/OS (Datacenter Operating
System) on top of Mesos as an open source project with
commercial offering for enterprises that need additional
capabilities and support. DC/OS provides a ready to use
platform with a management interface, scheduling,

10
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

network, and more. With Mesos alone, you need to set up
components individually.

Marathon is a framework for container and services
orchestration typically used with Mesos and DC/OS.
Kubernetes can also be used for orchestration on top of
DC/OS.

Mesos and DC/OS are typically used in large-
scale clusters with nodes counts exceeding
10,000, with the clusters running hundreds of
thousands of containers. This is a great option
in organizations that need massive distrib-
uted system scale and use big data applica-
tions such as Hadoop, Spark, or Cassandra.

11
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Building and
Deploying
Containers

Every DevOps organization strives to have a supply
chain that can consistently develop, package, and
get applications into production faster. The tech-

nology to accomplish these goals has not always been
available. Today, however, containers make this possible.

The first step for getting your supply chain pipeline up
and running is to create processes to streamline building,

Chapter 2

IN THIS CHAPTER

»» Building containerized
applications

»» Shipping container images

»» Implementing CI/CD/CS

12
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

packaging, shipping, deployment, and operation of your
services.

Building Your Images
Your images are the core of your environment and must
be treated with care. Keep these four key items in mind as
you undertake the image creation process:

»» Use a trusted base image. Building containers
from a standard base image ensures that you have
better knowledge of how and when your images
are updated so you can keep things consistent.

»» Restrict libraries and dependencies. Containers
are often used to help decouple components of an
application as a part of creating a microservices-
based architecture. Doing so helps make security
and operations easier by reducing the contents of
an image and more strictly focusing the functional-
ity of that image.

»» Restrict access. Security is paramount. As a part of
the image creation process, you need to develop a
security approach. For example, avoid running
processes as the root user and restrict access to
storage volumes and other resources in containers.

»» Scan images for known vulnerabilities. Use an
image scanner to identify vulnerabilities within

13
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

your image and track components and versions
included on each one.

Once you have a process in place, many good
tools such as Jenkins, CircleCI, Bamboo,
CodeFresh, and GoCD can automate the tasks
required to build, package, and test software.
Whatever your team decides, make sure
everyone is comfortable with the software
and make it a mandatory step for containers
to pass through your build tool before being
added to a registry.

Shipping Container Images
After an image is built it should be pushed into a registry
such as DockerHub, Quay, Google, Amazon, Azure Con-
tainer Registry, or your self-hosted registry, running on
a tool such as Docker Registry, Portus, or Harbor.

Your trusted registry must require authentication so
images are not available to just anyone and to ensure that
only images that have been scanned and are ready to be
deployed are available.

As a part of this process, you should enable
the content trust feature. This provides the
ability to add digital signatures to images.
These signatures allow clients to verify the
integrity and publisher of images.

14
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Implementing CI/CD/CS
A complete container supply chain process typically cov-
ers integration (CI), deployment (CD), and security (CS)
as a continuous, ongoing process. Here’s an overview of
the steps necessary for a CI/CD/CS pipeline.

Continuous integration
Continuous integration is a process by which code is auto-
matically tested each time a change is committed to ver-
sion control. Implementing continuous integration is
accomplished through a series of activities, including

»» Writing automated tests for every feature: This
prevents bugs moving forward in the software supply
chain process.

»» Creating a defined CI process: A CI server monitors
the code repository for changes and triggers the
automated tests when new commits are pushed.

»» Maintaining a strong testing culture: Testing
should be seen as a core part of the development
process, including unit tests as well as functional
and packaging testing.

Continuous delivery
Continuous delivery is a concept that enables organiza-
tions to automatically build, test, and otherwise prepare

15
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

software for deployment into the production environ-
ment. Here are several important considerations to keep
in mind when implementing continuous delivery:

»» Automated deployment to the Docker registry.
Images should be automatically pushed by the CI
server into an image repository known as the
registry.

»» Infrastructure, configuration, and security
should be handled as code. Changes to infrastruc-
ture, service configuration, and security should be
part of the same change tracking and management
process used with changes in code.

»» Functional testing should be in place. Auto
mated functional tests for all layers should be run
in staging environment before production. This
ensures that nothing was missed before code is
pushed into production.

Continuous deployment
At first, continuous delivery and continuous deployment
may appear to be the same thing, but there are some
nuances. Continuous delivery has an end result that a
particular update is safely deployable. The update isn’t
automatically deployed into production. That’s where

16
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

continuous deployment comes in. Here are a few of its
features:

»» Implementation of automated deployments:
Deployments can be fully automated, or at least a
one-step process triggered by a human, in concert
with integration with the orchestration platform.

»» Rollback ready: This ensures that the organization
can go back to a previous software version if issues
are found after the deployment goes into production.

»» Integration of feature flags. A feature flag is a
toggle that enables or disables a specific feature.
This allows developers to begin including code for
new features, even if those new features aren’t
quite ready for prime time. This ensures that users
are not affected by incomplete features.

Continuous security
Don’t miss security as part of the pipeline. A movement
known as DevSecOps advocates making security part of
this process.

In addition to the security best practices you
should consider while building and deploying
containers, closing the gap requires imple-
menting new security layers during the pro-
duction phase of the container lifecycle.
Chapter 4 covers this in more detail.

17
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Monitoring
Containers

Over the past few years, the infrastructure and
ecosystem evolution with microservices and
containers has made many existing monitoring

tools and techniques no longer relevant. Instead, devel-
opers need solutions that can adapt to the short-lived
and isolated nature of containers and application
services.

Chapter 3

IN THIS CHAPTER

»» Collecting and managing metrics

»» Monitoring the environment

»» Troubleshooting: Going beyond
monitoring

18
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Understanding Container
Visibility Challenges
On one hand, containers provide flexibility and portabil-
ity, but on the other hand, they complicate monitoring
and troubleshooting. Why is that? As isolated “black
boxes,” containers make it difficult for traditional tools
to penetrate their shells in an effort to observe processes
and performance metrics.

Here’s why.

Monitoring agent shouldn’t
add a second service
A best practice for using containers is to isolate work-
loads by running only a single process per container.
Placing a monitoring agent — which amounts to a sec-
ond process or service — in each container to get visibil-
ity risks destroying a key value of containers: simplicity.

Scalable and dynamic
infrastructure with microservices
In static environments, it was simple to get monitoring
agents running on a host and pointed at relevant applica-
tions. You installed the agent and then moved on.

19
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

With containers, microservices come and go. They move
around, scaling up and down as demand shifts. The
dynamic nature of containers makes manual configura-
tion to collect relevant metrics impossible. Instead, mon-
itoring must focus a bit differently. You want to know
how your service — the one that is comprised of multiple
containers — behaves overall but also how each contrib-
uting container individually performs in its role.

Metric data volume is
voluminous
Modern application infrastructure is increasingly focused
on large-scale deployments. Host, container, network,
and orchestration metrics — the elements required to
understand performance and health — grow exponen-
tially. Storing millions of data points for long-term
trending and analysis requires horizontal scaling and
new types of databases to support storing of metrics for
analysis. Because these metrics come from different
sources, the metric cardinality grows exponentially.

Collecting Metrics
Monitoring containers is not simply about visibility into
container processes. To understand the whole picture,
teams must monitor containers, services, and the infra-
structure on which these run — and do so with minimal

20
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

impact. A number of methods exist for instrumenting
and collecting data.

Container monitoring requires collection of a broad range
of metrics and event data to reflect true service response
times and resource utilization while also capturing over-
all infrastructure state and health. Several approaches
are available. Understanding each will help you choose
what’s best for your environment:

»» Monitoring process inside a container: As
previously mentioned, this method is generally
considered undesirable because of the bloat it can
impose on containers. This approach adds
monitoring software to containers to collect and
export metrics.

»» Sidecar containers: This approach attaches a
monitoring agent container to each application
container deployed — like a motorcycle sidecar.
This enables a monitoring agent to run as an
isolated process; however, this method comes with
the downside of contributing to container sprawl.

When you use sidecar containers, you’re
essentially doubling the number of
containers in production. This introduces
significant overhead into your application
environment.

21
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

»» Agent-per-pod: This approach attaches a monitor-
ing agent to a group of containers like Kubernetes
pods — containers that share a namespace. This
method is easy to set up, but resource consump-
tion is high per-agent because of the volume of
metrics flowing through it.

»» Syscalls: This model utilizes a monitoring agent for
each host that collects metrics by observing all
system calls traversing the OS kernel. This method
drastically reduces the monitoring agent’s resource
consumption and per-container instrumentation. It
allows you to see what’s happening inside a
container from the outside. This approach also
enables you to collect in-depth data for containers,
short-lived processes, orchestration tools, and
underlying infrastructure with little overhead.

Aggregating and Segmenting
Metrics
To understand actual performance with microservices
and containers, it becomes critical to view metrics broken
down by logical service rather than physical infrastruc-
ture. Container-native solutions leverage orchestration
metadata to aggregate container and application data on
a per-service basis.

22
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

This allows you to drill into metrics at different layers
of a hierarchy. For example, in Kubernetes, you have
namespaces, services, deployments, pods, and containers.
Segmenting metrics by these layers lets you see aggre-
gated performance, which is essential for logical trouble-
shooting: a drill-down process where you identify the
application with an issue; the microservice where the issue
comes from; the specific pod, container, and process with
the issue; and the host where it is running at that moment.

Monitoring the Environment
Layers
When monitoring containers, it is important to have vis-
ibility into a wide range of environment components.
Getting a complete picture depends on availability of the
right data in the right format. When evaluating monitor-
ing tools, look for availability of the following metrics
and information.

Infrastructure
Infrastructure-level monitoring, from host resources to
storage and networking, provides information that helps
determine the root cause of certain container issues. For
example, host CPU metrics are an important factor when
trying to understand which containers are using the most
computing resources.

23
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Services
Service metrics provide views into the performance of
each of the services, such as load balancing or web
endpoints, that comprise your application. If there’s an
application slowdown, being able to see the relative
performance of each microservice helps you pinpoint
problems.

Applications
Application metrics such as the number of connections,
current response time, and reported errors, are focused
on the health and performance of your application as a
whole from a user perspective. Having data at this level
takes much of the guesswork out of understanding the
user experience with your solution.

Custom metrics
Custom metrics are those that are uniquely defined
within an application or by a developer for tracking spe-
cific information. Custom metrics are typically of high
value, put in place to reveal important details about
application behavior and events:

»» JMX: Java Management Extensions (JMX) are used
to expose run-time metrics for monitoring Java
applications.

24
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

»» StatsD: StatsD is a lightweight protocol for custom
metrics. Libraries for implementing StatsD are
available in most popular languages.

PROMETHEUS
MONITORING

Prometheus is an incubating project of the
Cloud Native Computing Foundation (CNCF).
The CNCF fosters a community around open
source technologies that orchestrate containers
as part of microservices architectures.
Prometheus is one of the fastest growing proj-
ects, providing real-time monitoring, alerting,
and time-series database capabilities for cloud
native applications. It is used to generate and
collect metrics from monitored targets and inte-
grates with many popular open source and
commercial tools for data import/export.
Prometheus client libraries enable developers to
instrument application code. Its PromQL query
language lets users select and aggregate time
series data. Many of the orchestration and
enterprise container application platforms,
including Kubernetes, OpenShift, and
Mesosphere DC/OS, have embraced the solu-
tion and export Prometheus metrics by default.

25
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Despite being widely used, because of its lack of
metrics labels support, StatsD’s popularity is
decreasing in favor of Prometheus metrics.

»» Prometheus: Prometheus is an open source
monitoring project that introduced a metric format
known as Prometheus metrics. Client libraries also
exist for multiple languages. This format features a
generic label functionality that has multiple
benefits on microservice-based applications.

Orchestration: The new layer
As the chief coordinator of containerized services,
orchestration tools provide a wealth of information about
a microservices environment. Tapping into this resource
is critical to gaining a true understanding of your infra-
structure. Tags and labels from the orchestration allow
you to represent metrics by the logical organization of
your architecture versus a physical orientation. This
means you can take an application-centric view of your
environment and gain critical insights into a number of
elements, including

»» Health metrics: Health metrics for orchestration
provide performance data like CPU, memory, disk,
or response time. When aggregated for logical/
application entities such as namespaces, deploy-
ments, or pods in Kubernetes, these metrics give

26
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

you a better understanding of your applica-
tion’s behavior.

»» State metrics: State metrics, such as those
provided by Kubernetes kube-state-metrics, are
about the status or count of orchestration objects.
For example, state metrics can provide information
about the number of containers ready versus the
desired number for a given service, or let you know
if a container is restarting in a loop so that you can
take appropriate action.

»» Internal services: Orchestration tools are built
from multiple components and services. To
guarantee health and performance of the platform,
you also need to monitor them. In Kubernetes,
services that require monitoring include etcd, API
server, and kubelet.

Designing a Monitoring
Process
Containerized applications running in production must
be constantly monitored for availability, errors, and ser-
vice response times. Achieving this requires collection of
a wide range of telemetry and event data. Sources and
approaches for collecting and presenting this informa-
tion can be varied.

27
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Metrics
By collecting and correlating container metrics with
infrastructure and orchestration data, you can monitor
the performance, health, and state of your containerized
applications and maximize availability.

Two widespread solutions for container monitoring use
different methods:

»» Sysdig Monitor: Sysdig auto-discovers container
metrics via system calls. It collects a wide range of
data such as host and container performance
metrics, custom metrics, state metrics, application
metrics, and more. This includes integration with
Prometheus to ingest metrics from instrumented
apps and enable advanced queries using the
Prometheus query language (PromQL). Sysdig tags
all metrics with all the available metadata and tags
to support exploring, aggregating, segmenting, and
drilling down. All system call activity can be
recorded for container troubleshooting. Sysdig
Monitor backend has outstanding scalability and
serves well in scenarios that support thou-
sands of nodes.

»» Prometheus: Prometheus lets you define and
expose metrics via an HTTP endpoint through
sidecar containers known as Exporters. Prometheus
will scrape these endpoints periodically and will
store the metrics in its database. Additional

28
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

software like Grafana or AlertManager is required
to build a complete monitoring system.
Prometheus metrics is the format used internally
for Kubernetes orchestration state metrics.

Tracing
Tracing is designed to log and track transaction flows as
requests propagate throughout an application. This allows
administrators to observe latency for each microservice
and identify bottlenecks that affect performance. Tracing
is accomplished through two primary toolsets:

»» Application Performance Monitoring: Typically
used by programmers for debugging in staging
environments with request-level visibility,
Application Performance Management (APM) tools
can be as useful for containerized apps as they are
for traditional apps.

»» OpenTracing: OpenTracing is a new, open
distributed tracing standard for applications. It
allows developers of applications to instrument
code for transaction tracing without binding to any
particular tracing vendor.

Tracing has a significant performance impact,
which is why it’s generally limited to trouble-
shooting. Often developers want specific met-
rics on their applications performance and

29
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

run-time behavior. Custom metric frame-
works such as JMX, StatsD, and Prometheus
provide the required information without
performance drawbacks.

Events, logging, and backtracing
There’s a lot more behind the scenes in a container-
centric architecture, though. Three additional elements
help to complement the observability of the infrastruc-
ture, applications, and services:

»» Event monitoring is the process of collecting and
signaling event occurrences to administrators. For
containers this might include events such as image
pull, start, kill, or out of memory. Administrators may
want to be notified when these events take place.

»» Logging involves the collection of computer-generated
errors or informational messages for analysis of system
behavior. Each event in your infrastructure — from
containers to operating systems and applications designed
to do so — generates data that is recorded in logs.

»» Backtracing provides information about what
happened when an application crash occurred. By
examining the backtrace, you can try to determine the
cause of an application crash and pinpoint where you
should focus your troubleshooting efforts.

30
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Dashboarding and Exploring
A key component of any container monitoring solution is
the visual display of the metrics and events. Graphical
dashboards, as well as other more dynamic visualizations
such as topology maps or hierarchical explore views,
simplify the task of understanding your environment and
identifying anomalies.

Alerting
Just like in all areas of IT, alerting in a container environ-
ment is a critical activity when it comes to identifying
potential problems and events that can hinder applica-
tion performance and availability. Keeping track of
what’s happening, especially in a large, dynamic envi-
ronment, requires automation.

However, unlike in traditional environments, a process
dying or a container being killed doesn’t necessarily
mean that there is a problem. Orchestration tools are
generally designed to handle exactly these situations and
can often self-heal and bring things back into working
order without administrator intervention. Still, adminis-
trators may need to be notified if a problem will affect the
platform or users. That’s why alerting must be imple-
mented and why it must have connections to let it under-
stand how the entire environment operates.

31
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Troubleshooting: Going
Beyond Monitoring
A key challenge with troubleshooting containers is that
they may no longer exist after a problem occurs.

This is by design. Containers are often
described as ephemeral constructs that last
for only as long as they’re needed. When
their single task is complete, the container is
stopped, destroyed, or otherwise disposed of
while the application moves on to the next
step in its process.

Orchestration tools schedule and reschedule containers
as the environment changes. Comprehensive container
monitoring solutions should include the ability to auto-
matically record all of the activity on a system that takes
place surrounding an event. Capturing information such
as commands, process details, network activity, and file
system activity allows after-the-fact investigation, even
after containers are gone and outside the production
environment.

32
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Choosing a platform
Monitoring systems that collect, analyze, dashboard, and
alert on containers come in different forms. Open source
options that you need to build, maintain, and scale on
your own are available. The industry also provides
software-as-a-service (SaaS) solutions in a fully man-
aged and fully supported cloud service with no
maintenance.

Moreover, on-premises solutions are available that you
can deploy as software in a private cloud for greater
security and isolation. Some solutions provide a vertically
scalable, single-server backend solution for moderate
monitoring workloads, and others follow a horizontally
scalable distributed systems model to enable flexible
scaling to better accommodate growth over time to large-
scale monitoring with long-term data retention.

Which platform you choose should take into account
expected growth, security and compliance requirements,
and historical retention.

33
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Securing Containers

Maintaining secure practices is a never-ending
cyclical battle. Even as you implement brand
new security measures and install patches,

you’ve arrived just in time for the next vulnerability to be
exposed. And so it goes. . . .

A well-designed container architecture can be used to
make your environment more secure. Even without addi-
tional services being added, containers can provide addi-
tional levels of security. Containers are isolated, have
fewer dependencies, and should be immutable. However,
establishing secure processes in your organization can be
challenging because there are so many moving pieces.

Chapter 4

IN THIS CHAPTER

»» Identifying common container
threats

»» Handling configuration and
compliance

»» Ensuring run-time security

34
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Identifying Common Threats
A number of security issues can plague containers. The
following sections describe some of the security consid-
erations you need to account for in your container
environment.

Container resource abuse
Thanks to their lightweight and single-process nature,
containers typically far outnumber virtual machines.
Their nature makes it possible for you to spawn big clus-
ters of them on modest hardware. Because of this volume,
software bugs, design miscalculations, or a deliberate
malware attack can easily cause a denial-of-service.

By implementing container limits, you can prevent your
containers from consuming too many resources. If con-
tainers don’t have limits, they can easily affect the host
and deny critical resources to other workloads.

With container resource limits, you gain the
ability to set CPU and memory limits on a
container. Over time, you should implement
monitoring to compare these constraints
against actual consumption.

35
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Outdated container images
The longer you run software without updating it, the
more likely it is to eventually be exploited. Your service or
application might pull a hardcoded image from a reposi-
tory, or that image might not be rebuilt as the base image
is updated with patches or other new software. This
means you could easily have older, vulnerable software
running in production.

You can take several steps to avoid this situ-
ation. First, you should continually monitor
how long containers have been running in
production and make sure they stay current.
Second, try to avoid running different ver-
sions of the same image in production. This
helps to avoid confusion and inconsistencies
that can lead to insecurity. Finally, make sure
you use a vulnerability scanner to stay up to
date on any potential security issues in the
software you use.

Secrets management
Software needs sensitive information to run. This
includes user password hashes, server-side certificates,
encryption keys, and more. This sensitive information
should be handled independently from application code,
container images, and configuration, and should be
stored in a secure location such as a secrets vault. Most

36
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

container orchestration platforms have this functionality
built in through a feature called secrets management.

As with most things, you should follow best practices
with regard to secrets management. One common prac-
tice is to use environment variables for secrets, although
this is an insecure practice that you should avoid. Fur-
ther, avoid embedding secrets inside container images.

Consider the use of a Docker credentials
management system, but do not attempt to
create your own unless you know exactly
what you are doing. Doing otherwise could
create a major security issue.

Container image authenticity
Plenty of Docker images and repositories doing all kinds
of awesome and useful stuff are available on the Internet,
but if you are pulling images without using any trust and
authenticity mechanism, you are running arbitrary soft-
ware on your systems. Here are some important ques-
tions you should ask:

»» Where did the image come from?

»» Do you trust the image creator?

»» When was the image last updated?

»» Which security policies are they using?

37
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

»» Do you have objective cryptographic proof that the
author is actually that person?

»» How do you know nobody has tampered with the
image after you pulled it?

Common sense should prevail, along with
some additional steps. First, regular Internet
common sense applies: Do not run unverified
software and do not run software from
sources you don’t explicitly trust. Next, deploy
a container-centric trust server using some of
the Docker registry servers available. Finally,
enforce mandatory signature verification for
any image that is going to be pulled or run-
ning. By doing so, you can make sure that
you’re always running approved software.

Shared kernel architecture
If an attacker compromises your host system, the con-
tainer isolation and security safeguards won’t make
much of a difference. The host system is a shared compo-
nent that, once compromised, results in the compromise
of underlying containers. Take appropriate steps to
restrict access to unnecessary kernel functionality on
containers and host OS services.

One potential issue with containers is referred to as
container breakout. This phenomenon occurs when a
container has bypassed isolation checks and accesses

38
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

sensitive information from the host or gained additional
privileges. In order to prevent this, it’s important to
reduce the default container privileges, which can be
accomplished via various means.

Most importantly, services and users should
only have access to services that they need.
Drop capabilities — fine-grained access con-
trol beyond the root all or nothing — that are
not required. As you add services, avoid run-
ning containers as a privileged (root) user,
privileged containers, and sensitive mount
points. Lastly, make sure your policies
enforce mandatory access control to prevent
undesired operations — both on the host and
on the containers — at the kernel level.

Run-time security monitoring
But what if, despite all these precautions, the image has
been compromised during run-time and starts to dem-
onstrate suspicious activity? What if your own in-house
application has a vulnerability you didn’t know about?
Or, what if you discover that attackers are using a zero-
day exploit not detected by your scanning services? Run-
time security can be compared to Windows anti-virus
scanning. It lets you detect and prevent an existing
breach from further penetration deeper into the system.

39
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Handling Configuration
and Compliance
Half of the battle in security is making sure your teams
follow secure configuration and compliance practices.
Luckily, containers have many default run-time security
features, some described in this section, and their porta-
bility eases the burden on developers.

Compliance checks
The Center for Internet Security (CIS) has published
general security recommendations for Docker and Kuber-
netes. These recommendations can be tested against your
infrastructure with some scripts known as benchmarks,
docker-bench, and kube-bench projects. Run these peri-
odically against your infrastructure to see if it meets best
practices.

Kubernetes security features
Kubernetes has many security features baked into it.
Before evaluating external vendors, check out what
Kubernetes offers first. These are a few of Kubernetes’s
security capabilities:

»» Role-based access control (RBAC): RBAC specifies the
authorization and access control specifications that
define the actions allowed over Kubernetes entities.

40
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

»» Pod security policy: Using security policies, you can
restrict the pods that will be allowed to run on your
cluster. For example, you can configure resources,
privileges, and sensitive configuration items.

»» Network policy: A network policy is a specification
of how groups of pods are allowed to communicate
with each other and other network endpoints.

Ensuring Run-Time Security
Once a container is deployed, you need to put security
measures in place to detect violations of expected activity
or prevent certain system calls, processes, or network
connections from occurring that could be detrimental.

You have several ways to secure your containers at run-
time, including these:

»» Seccomp: This method allows you to restrict the
system calls available within a container so that the
container stays within its boundaries.

»» SELinux and AppArmor: These are traditional
run-time Linux enforcement modules that can also
be used to improve the security of containers.

»» Falco: This is a behavioral activity monitor that
gives visibility into the behavior of your containers

41
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

and applications. Falco lets you drill down to details
such as system, network, and file activity.

»» Sysdig Secure: This is a powerful run-time security
and forensics solution for your containers and
microservices. Sysdig Secure also provides
vulnerability management and image scanning as
well as compliance and audit services.

Working with Forensics
and Incident Response
Containers are ephemeral and bring challenges to col-
lecting the data that is needed to properly investigate an
event and comply with the granular forensic require-
ments dictated by many regulation regimes.

With VMs, you have the ability to connect remotely to the
system using something like SSH. However, with con-
tainers, chances are good that the container might have
disappeared after the security incident — that’s just a
fact in the world of containers. Logs have limited infor-
mation, making it difficult to understand why something
went awry.

Fortunately, open source options such as Sysdig Inspect
enable the recording of all system activity. With more
information available, you increase the ability to under-
take deep forensics and post-mortem analysis.

43
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

Ten Container
Takeaways

As containers continue to make their way into a
dominant role for large-scale application deploy-
ments, you should keep these critical consider-

ations in mind:

»» Choose and implement your orchestration tool
early on to support your containers in production.

»» Take a security-centric approach as you build
your environment.

Chapter 5

IN THIS CHAPTER

»» Reviewing key points about
containers

»» Deploying containers effective
and securely

44
These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

»» Trust and then verify via ongoing monitoring.

»» Implement a CI/CD/CS pipeline.

»» Embrace and manage increased complexity.

»» Understand your monitoring and instrumenta-
tion options and the pros and cons of each
approach.

»» Monitor everything.

»» Make sure you can measure and correlate
incident responses.

»» Use a secrets management framework.

»» Look beyond deployment.

These materials are © 2018 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use
is strictly prohibited.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page

	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1
Understanding Containers and Orchestration Platforms
	Moving to Microservices
	Comparing Orchestration and Management Tools

	Chapter 2
Building and Deploying Containers
	Building Your Images
	Shipping Container Images
	Implementing CI/CD/CS

	Chapter 3
Monitoring Containers
	Understanding Container Visibility Challenges
	Collecting Metrics
	Aggregating and Segmenting Metrics
	Monitoring the Environment Layers
	Designing a Monitoring Process
	Dashboarding and Exploring
	Alerting
	Troubleshooting: Going Beyond Monitoring
	Choosing a platform

	Chapter 4
Securing Containers
	Identifying Common Threats
	Handling Configuration and Compliance
	Ensuring Run-Time Security
	Working with Forensics and Incident Response

	Chapter 5
Ten Container Takeaways
	EULA

