
Continuous
Governance:
The Guardrails
for Continuous
Everything

Introduction
The continuous economy represents one of the most inspiring
changes for how companies approach software development and
delivery. The rousing shift towards continuous integration (CI)
and continuous delivery (CD) essentially spawned the continuous
everything movement. Companies can now create, test, deliver
and deploy applications frequently and predictably by automating
processes using open source tools like Jenkins and Jenkins X.

But the shift towards the continuous everything (CE) model
inherently creates a perception of risk and question about who
governs the process. Understanding how governance plays into the
continuous economy is one of the most important pieces that is not
yet well understood.

This eBook briefly describes some of the foundational pillars on
which continuous everything stands. Continuous governance (CG) is
one of the numerous pillars of continuous everything, and one that
encounters an unfair share of confusion. This eBook explains how
governance applies to the continuous everything paradigm to form
the basis of continuous governance.

1

https://jenkins.io/
https://jenkins-x.io/

What is governance?

To internalize continuous governance, it is imperative to first
understand what governance is. According to Wikipedia, governance
is all of the processes of governing undertaken by a government,
a market or a network over a social system through norms of an
organized society.

But who governs governance? The governing body has
leverage over others and hence ownership could get political. If
every organization comes up with their own governance standards,
the industry will continue to remain deeply fragmented on this
controversial topic. CloudBees has identified the major players as risk,
compliance, engineering organizations and auditors (both internal
to organizations and external), and is leading the charge to bring the
industry under a unified governance umbrella.

Compliance

External
Auditor

Internal
Auditor

Engineer
Developer/Tester/

Ops/Security/...

Risk

CloudBees

This eBook illustrates continuous governance
protocols that can be productized into an industry-
standard governance engine, which can then be
integrated with continuous everything pipelines to ensure
continuity of governed processes. However, first, let us dive into
the continuous paradigm and then hone in on continuous governance
to understand how it fits.

2

Continuous Everything
Continuous everything or the continuous paradigm encompasses many pillars as seen in the illustration below.

We will define each pillar, provide a concrete example for further clarification and identify governance use cases. We will then dive
into the the tenets of continuous governance.

CONTINUOUS
INTEGRATION

CONTINUOUS
TESTING

CONTINUOUS
DELIVERY

CONTINUOUS
DEPLOYMENT

CONTINUOUS
ANALYTICS

AND INSIGHTS
CONTINUOUS
GOVERNANCE

Continuous Everything

Teams integrate
early and often

Automated tests
integrate with

pipelines

Products are ready
to be released

with some gates

Release products
with no

manual gates

Data derived from
pipelines feed to

teams and complete
the feedback loop

Pipelines flow
continuously once
protocols are met

Source: CloudBees, Inc.

Everything

Deployment

Integration

Delivery

Testing

Analytics
and

Insights

Governance

3

Continuous integration
Continuous integration is a process where teams integrate
early and often to detect issues earlier in the cycle.

As the code for features, bug fixes, tests, configuration,
data, and infrastructure are committed, pipelines can run
static analysis security testing (SAST) with the help of
integrated scanners. These can flag security vulnerabilities
in minutes that could potentially weaken (and sometimes
cripple) the organization’s security posture. In this
case, continuous integration reduces the organization’s
susceptibility to cybersecurity threats.

The cost of a defect is:

 » �Small in development/test environment

 » �Medium in staging

 » �Large in production

Hence, fixing defects earlier in the pipeline lowers the total
project cost.

Governance use cases
These are governance use cases that need to be included in
the continuous integration framework for teams to integrate
seamlessly.

The following two are particularly important with the culture
of distributed workforces gaining momentum.

 » �Everyone should not be able to read all parts of the
source code repository.

 » �Everyone should not be able to commit code to all parts
of the source code repository.

Also, the following use cases should be addressed.

 » �Secrets should not be committed to version control in
clear text.

 » �Versioned artifacts and/or images should be stored in
version control and/or an artifact repository.

 » �For source code and artifacts to be safe in the cloud,
cloud providers should provide evidence of periodic
audits.

1Continuous integration is a process where teams integrate
early and often to detect issues earlier in the cycle.

4

Continuous testing is a process where automated tests
integrate with pipelines and form gates to determine
whether code should be promoted from one pipeline
stage to the next.

Last-minute feature additions and bug fixes are normal
and when under pressure from tight deadlines, teams
may add them without updating the test suite. These
can inadvertently introduce fatal problems at the
last minute, like a performance issue. Pipelines, with
integrated performance tests, will abort and send
notifications to potential culprits in the team. However,
without continuous testing, this can cause customer
dissatisfaction and downtime.

Governance use cases
These are governance use cases that need to be included
in the continuous testing framework for teams to test
seamlessly.

 » �Teams should not be allowed to bypass test
execution in pipelines. Zero test failures is not
always a good thing since zero test failures can
result from zero tests executed.

 » �Test code, scripts, configuration and data should
be in version control and colocated with the
system under test.

 » �Test execution results should not be editable.

 » �Production data sets should be masked/scrubbed
before use in development/test and staging
environments to protect consumer privacy.

 » �A common concern is: How do we know that
tests don’t have bugs? Tests should not be written
to validate tests; otherwise, we need to write
tests for those tests too. This recursive pattern
of testing the tests does not scale or even make
sense. Govern, but don’t be paranoid.

 » �Auditors require “test evidence” or “audit
evidence.” The data model should be clearly
defined, as in:

	 – Test id
	 – Test description
	 – Test duration
	 – Test status (pass | fail)

This “test evidence” data model should be standardized
across internal and external auditors.

 » �Pipelines should abort even if one test fails. An
incomplete test amounts to a failed test.

 » �Tests, and test suites, should be idempotent and
independent, so that they can execute in parallel.
This significantly reduces test cycle time, feature
lead time and, eventually, time to market.

Continuous testing

2Continuous testing is a process where automated tests
integrate with pipelines and form gates to determine whether
code should be promoted from one pipeline stage to the next.

5

Continuous delivery is an automated approach where
products are ready to be released from a source control
repository to production with one or more manual gates.

Once an application is validated by automated tests, it
is promoted from the development/test environment
to staging. Before deployment to production, pipelines
can file change requests automatically and poll for a
human to verify and approve. Once the human approves,
pipelines continue from where they left off. This is
an example of a manual gate. Pipelines generate an
audit trail by recording the approval details (time of
approval, for instance), along with the approver’s details
(identification, for instance).

Note that the manual gate can be in other parts of the
pipeline too. This is just one example prevalent in the
industry.

Governance use cases
These are governance use cases that need to be included
in the continuous delivery framework for teams to
deliver seamlessly.

 » �How many environments are too many?
CloudBees recommends three – one
development/test environment per pull request,
one staging environment and one production
environment. You can extend the guiding
principles mentioned in this eBook to more,
although be warned that more environments
could lead to more maintenance overhead.
“Death by a thousand environments” isn’t worth
the trouble.

 » �Secrets should be managed securely by the
pipeline. The definition of secrets should not be
constrained to just passwords but should extend
to keys, certificates and all sensitive information.

 » �Key rotation policies should be designed and
implemented to reduce the possibility of
breaches.

 » �Pipelines should be configured to touch only
those production assets that they need to.

 » �If a pipeline is configured to seek approval,
only a selective set of people should be enabled
to provide approval, thus honoring segregation
of duties.

 » �Pipelines are designed to integrate with SaaS/
IaaS/PaaS providers, and If those vendors get
breached, pipelines could be affected. Audit/
compliance protocols should be standardized for
*aaS vendors.

 » �Artifacts that have been deployed to
development/test environments should be
retained for X days, staging for Y days and
production for Z days. Typically, Z > Y > X.

 » �CAB (Change Approval Board) or similar councils
that perform manual change approvals should
be discouraged, since it nullifies the continuous
bandwagon.

Continuous delivery

3Continuous delivery is an automated approach where
products are ready to be released from a source control
repository to production with one or more manual gates.

6

Continuous deployment is an automated approach to
release products from version control to production
with no human intervention, which means there are no
manual gates.

Once an application is validated by automated tests, it
is automatically promoted from the development/test
environment to staging to production with no human
intervention. Change requests are filed and approved
by the pipeline automatically. You may question the
legitimacy of pipelines providing approvals. However,
this automated audit trail radically enhances traceability.

Some organizations (and not just large enterprises)
do not allow continuous deployment based on their
internal risk, governance and compliance constraints, and
instead practice continuous delivery with manual gates.
However, be aware that some auditors have not invested
in continuous everything deeply enough and this causes
them to discourage this practice, mostly due to lack of
education and awareness.

Governance use cases
These are governance use cases that need to be included
in the continuous deployment framework for teams to
deploy seamlessly.

 » �Removing the manual gate does not violate
segregation of duties (SoD). Techniques like
GitOps, where environments are Git repos and
automated promotion of code and artifacts
happens via pull requests and pipelines, help
automate SoD.

 » �Your customers may not want to see code go live
every time there is a commit and the pipeline
runs. In this case, we need to find a middle road
to enable upgrades when it’s safe and at the
same time not dwell too long on older versions
of the product.

 » �We need to appreciate the nuances in industries
involving firmware, embedded systems, hardware
and IoT (internet of things). Here are a few cases
to consider:

	 – �Medical devices may not be able to withstand
new software upgrades in the middle of a
procedure, especially ones that pose a risk to
the patient’s life.

	 – �Electric cars may not be able to accept every
kind of over the air (OTA) upgrade, especially
while driving.

	 – �Mobile users upgrade apps only by
choice and so teams may only be able to
continuously deploy to the app stores.

Continuous deployment

4Continuous deployment is an automated approach to release
products from version control to production with no human
intervention, which means there are no manual gates.

7

Continuous analytics and insights means that nuggets of
information are derived from pipelines and fed back to
the teams in order to complete a feedback loop.

In this case, facts rule. Opinions, however interesting,
can be irrelevant.

Pipelines generate hordes of transactional data that can
be mined into nuggets of information as part of pipeline
analytics. These nuggets feed into teams in a continuous
feedback loop, such that they constantly unlearn and
learn from fresh data.

Wherever we are in our continuous everything journey,
continuous improvement is at the heart of it. Pipeline
analytics and insights fuel continuous improvement and
the organic growth of teams. The trends observed in the
data position organizations for long-term success in a
scientific and data-driven manner.

We can analyze pipeline failures and observe that 50%
of the failures are due to violation of performance
benchmarks. This could mean that performance tests
and data are buggy, the product is indeed sluggish, or
even that the benchmarks themselves are inaccurate.

Either way, we know what work to prioritize for the
following sprint.

Or, we can look at repeat offenders, who are
instrumental in over 20% of pipeline failures, and
help them develop new skills and learn new tools. We
can also partner with teams who haven’t deployed to
production in the last seven days to understand what’s
causing their throughput to drop.

Governance use cases
These are governance use cases that need to be included
in the continuous analytics and insights framework for
teams to analyze seamlessly.

 » �Pipeline logs should not display consumer
confidential data, either personally identifiable
information (PII), financial information or health-
related data.

 » �Certain team members should have access to
selective portions of pipeline logs.

 » �Some people should have access to pipeline data,
in case it is streamed to a persistent store for
eventual mining.

 » �Key performance indicators (KPIs) should be
defined for the organization’s success, and should
not skew towards any one department’s vested
interests.

 �For example, the metric “number of tests
executed in a sprint” does not reflect the
effectiveness of tests. In fact, unless tests are
executed in parallel, they inflate the total pipeline
execution time. Some organizations have used
this as a success metric in the past and need to
be educated.

 �Similarly, the metric “number of releases per
sprint” reflects how fast we can move bits from
point A to point B, but does not reflect the value
delivered to the customer.

 » �KPIs should support both business and
engineering goals. Technical craftsmanship is
great, but we need to solve business problems
at the same time.

Continuous analytics and insights

5Continuous analytics and insights means that
nuggets of information are derived from pipelines
and fed back to the teams in order to complete a
feedback loop.

8

Continuous governance is a special flavor of governance that is pertinent to the continuous
paradigm, or in other words, continuous everything. It is the sixth pillar in the continuous
everything model.

On the other hand, the general term of governance applies as much to organizations as
it does to countries and governments. Governance is the process that ensures practices
which conform to an organization’s policies, whether driven by compliance, operational
efficiency or other business objectives. It determines:

 » �Interactions between individuals, teams and organizations.

 » �Decisions and the decision-making process itself.

 » �Roles and responsibilities.

Governance is a wide umbrella and encompasses lots of domains.

In the next section, we will expand on the main tenets of continuous governance to
understand how it fits into the continuous everything world.

 

Continuous governance

6Continuous governance is a special flavor of
governance that is pertinent to the continuous
paradigm, or in other words, continuous everything.

9

The Main Tenets of Continuous Governance
Pipelines are incarnations of the continuous everything paradigm and are products in their own right. They release high-quality
and secure products frequently and predictably to customers. Continuous governance defines principles that can be designed
into automated controls or software gates that promote code from one stage of the pipeline to the next.

Let’s study each tenet in more detail.

Register your pipelines
Pipelines can sprout from anywhere in the organization. However,
to attain legitimacy, all pipelines should be registered with the
following metadata:

 » �Product that flows through the pipeline. Pipelines are
associated with the product that flows through the pipeline.
Artifact(s) that constitute the product(s) being built, tested
and deployed should be registered alongside the pipeline.

 » �Team(s) that use the pipeline. Pipelines are associated with
teams of people who build and maintain the product that
flows through the pipeline.

 » �Owner who is responsible for the pipeline. Pipelines have
shared ownership since different people work on different
pieces that constitute the pipeline. For example, some
engineers could have built the pipeline, others could have
integrated tests with the pipeline and *aaS third-party
vendors could have provided the infrastructure for the
pipeline. Even though there appears to be multiple owners,
it pays to have a single point of contact for accountability.
Ownership could be rotated, as long as the person has the
necessary expertise to understand the nuances.

Version control
For the continuous paradigm to succeed, teams
should integrate code, scripts, data and configuration
in a central place to ensure repeatable behavior. This
embodies principles such as configuration as code,
infrastructure as code and in this particular context,
pipeline as code.

Version control is the only source of truth for:

 » �Source code

 » �Tests

 » �Configuration

 » �Data

 » �Infrastructure
	 – Pipelines
	 – Tools
	 – Network
	 – Cloud or data center resources

10

In the figure above, teams write code for components, tests,
infrastructure and configuration and commit to version control. Pipelines
then integrate with version control and run different validations before
promoting the code to the next stage.

For example, Mickey writes features and tests for the first component,
Minnie does the same for the second component, Donald writes
foundational pieces like pipelines and tools, whereas Goofy builds a Chef
pipeline for Chef cookbooks and recipes. Everyone commits every day
to version control, taking special care not to break the pipeline(s) before
they leave for Disney World for the weekend.

Some teams successfully use version control for documentation as
well. Additionally, GitOps is the latest trend to manage environments,
applications and application versions, where environments like staging
and production are Git repos and code gets promoted through automated
pipelines. Long story short, version control improves traceability and
auditability required in order for the continuous everything paradigm to
succeed.

Component1
Build

Component1
Unit Test

Component1
SCA

Test1 SCATest1 Build
Test1 Code/
Conf/Data

Review

Component1
Code Review

Component2
Code Review

Component2
Build

Component2
Unit Test

Component2
SCA

Foundation1
Code Review

Foundation1
Build

Foundation1
Unit Test

Foundation1
SCA

Chef
cookbook
Functional

(ServerSpec)

Chef
cookbook

Build

Chef
cookbook
Unit Test
ChefSpec

Chef
cookbook SCA

(Food Critic,
RoboCop)

Teams

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Mickey

Minnie

Donald

Goofy

Source: CloudBees, Inc.

11

Integrate all tests with pipelines
Tests are co-located with the system under test in version
control. Tests are versioned artifacts, just like the system
under test. Test execution results are automatically
generated and should not be editable. They are archived in a
format that can be submitted to auditors as test evidence or
audit evidence.

Also, teams are not allowed to bypass tests during pipeline
execution, since that enables pipelines to shoot defective
artifacts into production, only faster. Pipelines are meant to
bless us with responsible speed and not suicidal speed.

“Death by a thousand test types” is a syndrome of teams
who over-think the problem. The following types of
validations ensure quality and security of not just pipelines
and associated infrastructure but also products flowing
through the pipeline.

 » �Unit test. These tests do not interact with the
database or the network and help during code
refactoring. They are closest to the source code and
execute fast. Code coverage is a way to measure how
much code is covered with these tests. For example,
we can measure how many classes, methods and
functions these tests cover. A common malpractice
is to mandate a certain percentage of code coverage
without understanding the implications. Also, a
common oversight is to forget unit tests for security.

 » �Static code analysis. Static code analysis checks for
defects without executing code, and is inexpensive
and fast. There are two main purposes of static code
analysis.

	 a) �Static analysis security testing (SAST).
DevSecOps advocates that a product be
designed with security in mind, rather than
sending a finished product for evaluation.
Static analyzers can detect security
vulnerabilities and these are a few areas where
SAST should be applied.

	 b) �Coding violations. Static code analyzers ensure
coding best practices are honored by team
members in an automated fashion rather than
only through manual code reviews.

AREA DESCRIPTION

Open source
software (OSS)
libraries, plugins
and dependencies

These can contain vulnerabilities that
become part of your artifact. Although
you are not the author, the onus lies on
you to scan and fix problems that could
otherwise weaken your organization’s
security posture.

Owned and
operated software

This is code that you write and maintain.

Containers Containers are the new normal,
and securing containers is key to
successfully running your applications
securely inside containers.

12

 » �Functional. This is the largest bucket of tests, depending on the complexity
of your product. Functional tests validate customer use cases involving but
not limited to the following:

» �Integration. During integration testing, various parts of the system
communicate with each other over the wire. Integration tests primarily
validate the network along with product interfaces, and do not hone in on
functionality.

 » �Performance. Performance benchmarks are established with product owners
so that customer expectations are met. These benchmarks are used to pass
or fail performance tests which in turn helps the pipeline to proceed or abort
based on whether the benchmark was attained or not.

 � �Under normal conditions, traffic is expected to hit the established
benchmarks with a variance of 5-10%. Under extreme conditions, traffic
may swing wildly due to unusual circumstances. These validations are often
termed load or stress tests, and can be simulated programmatically.

 » �Security. Unlike SAST, which happens pre-deployment, dynamic analysis
security testing (DAST) is executed after deploying the product. The product
is expected to be functional and executing in containers or on servers at this
time. DAST explores for vulnerabilities the same way an attacker would in
real life. DAST is an incarnation of DevSecOps - just like SAST - and ensures
we address security vulnerabilities while building the product instead of
sending a finished product for evaluation.

TYPE DESCRIPTION

Positive scenarios These are “happy path” use cases that are regularly
experienced by customers.

Negative scenarios These are corner cases that do not occur every day but
cause havoc when they do.

Accessibility This enables employees with additional accessibility
needs to use the product.

I18N
(internationalization)

Based on business requirements, the product should be
ready for both domestic and international markets.

L10N (localization) The product should account for regional constraints.

Data quality The integrity of the data generated by the product should
be unquestionable.

13

Version and retain artifacts
Artifacts are generated only through the pipeline. Manually
generated artifacts can have unpredictable consequences
and should not be enabled for downstream consumption. An
artifact retention policy details retention periods for artifacts
deployed in development/test, in staging and in production
environments.

 » �Versioning. Each time the pipeline runs, the version
of the artifact is updated. The data model for artifact
versions could be {pipeline stage}.{major version}.
{minor version}. The pipeline, by default, increments
the {minor version} every time an artifact is built or
rebuilt. You could use timestamp as the minor version
because in the continuous world, any versioned
artifact is eligible to be a release candidate. Versions
should not include static strings like “snapshot” and
“release_candidate.”

 �Updating the {major version} happens only when
major functionality or a breaking change is introduced
in the product flowing through the pipeline. This
requires human intervention in the artifact metadata
in source control. {Pipeline stage} reflects how far the
artifact has reached in its lifecycle. For example, if you
have three milestones – development/test, staging,
and production, you could have a simple enumeration
like [1, 2, 3]. Every time an artifact gets promoted
from a lower environment to a higher environment,
{pipeline stage} is updated from 1 (development/test)
to 2 (staging) to 3 (production).

 » �Retention. Sometimes, production issues can
happen long after deployments. Versioned artifacts
in development/test are retained for X months
and versioned artifacts in staging are retained
for Y months. When a versioned artifact reaches
production, and the customer sees it, the organization
retains that version for Z months. Typically, Z > Y > X.
A retention policy is necessary for audits as well.

Do not expose consumer data
Under no circumstances should personally identifiable
information (PII), financial and/or health-related data appear
unmasked in pipeline logs.

 » �PII. Production data (or even snippets of it) containing
PII cannot be used in lower environments like
development/test or staging for testing unless the
data is masked or scrubbed. The masking process
is also known as scrubbing. Examples of PII are
government identifications like social security
numbers and birth date.

 » �Financial. Similar constraints apply to financial
data. Employees are at risk of becoming insiders
if they come into contact with financial data.
Examples of financial data are credit card and bank
account information.

 » �Health. Rigid constraints apply to health-related
information as per Health Insurance Portability
and Accountability Act (HIPAA) guidelines.

14

Manage secrets
With hackers continuously attacking systems, keeping sensitive data hidden is
paramount to avoid cybersecurity breaches. Passwords, certificates, API keys
and other sensitive data should not appear in clear text in pipeline logs or in
source control. This data should only be accessible by privileged roles set by the
administrator.

Keys should be rotated (meaning, periodically changed) to better defend against
potential breaches and compromises.

Automate segregation of duties
Segregation of duties (SoD) implies that no one person or group has control to
release software from version control to production. Essentially, SoD means we
have checks and balances that prevent any one person or group from becoming
too powerful.

The guiding principles of segregation of duties date back to the U.S. Constitution
where the total power of the U.S. government was distributed into three
branches – judicial, executive and legislative. This division enables checks and
balances and prevents any one branch from becoming too powerful.

The three branches of the U.S. Government

Executive LegislativeJudicial
Source: CloudBees, Inc.

15

However, blind applications of these SoD principles to continuous everything can be detrimental. In the continuous
world, we want to steer clear from hand offs, where person/group 1 finishes some work and hands off to person/group
2 for sign off. For example, we should not encourage developers to write the feature, and then hand off to a tester.
Similarly, we should not encourage testers to approve and throw it over the wall to operations, or reject and pass it back
to developers.

In the figure, notice the long chain of hand offs happening between various silos of an engineering organization before
the product goes live and the organization stands to make money. In this example, check in to go live is the time it takes
for a commit to reach the customer. It is a subset of feature lead time, which in turn, is a subset of time to market.

Having said that, let’s explore methods by which we can make modernized applications of SoD to the continuous world.

Check in to go live

Dev QA Tools Infrastructure Platform Release InfoSec Ops

?!? !?

Customer

Source: CloudBees, Inc.

16

 » �GitOps. Pull requests let you tell others about changes
you have pushed to a source control repository. Once
a pull request is sent, interested parties can review the
set of changes, discuss potential modifications and even
push follow-up commits if necessary.

 �Code review is a systematic examination of source code
for features, tests, data, configuration, infrastructure and
related functions. It is intended to find logic mistakes
and violations of standards. Code reviews can happen
alongside pull requests or even otherwise to prevent one
author from having total control.

 �GitOps is the latest technology where environments
like staging and production are Git repos. Promotion
of artifacts happens via pull requests and through
automated pipelines. GitOps is a modernized application
of SoD without manual hand off or sign off. Kube CD is
an offering from CloudBees that wraps around Jenkins
X and implements GitOps. Kube CD enables teams to
develop and deliver cloud native apps on Kubernetes in a
streamlined fashion.

 » �RBAC. Role-Based Access Control (RBAC) enables certain
actions to be allowed for certain roles. Roles should not
be muddled with organizational hierarchy or titles. Roles
are defined based on expertise and experience. Well-
defined roles prevent errors in pipelines and protect
teams from overstepping lines. CloudBees Core offers
flexible and governed continuous delivery that has a slick
implementation of RBAC.

 �For example, role A might be able to update secrets,
certificates and keys and role B might be able to update
expected test outcomes. Also, in the spirit of RBAC,
headless users should be single-purpose. Headless users
are nothing but automated agents created by admins
and authorized to perform work on behalf of named
accounts. Also known as service accounts, headless users
form the backbone of the continuous paradigm to enable
automation and reduce manual intervention.

 �However, there are some negative side effects of
headless users. As we know, with great power comes
great responsibility. Since headless users can perform
delicate actions the same way as humans can, we need
to establish clear ground rules of what they can and can
not do. To ease troubleshooting in case of unforeseen
accidents, headless users need to be segregated by
teams and also by functions. Let’s consider a couple
of scenarios.

Team A:

A headless user that
deploys to production

has access to this team’s
production assets.

Another headless user

who has write access to
the artifact repository.

Team B:

A third headless user that
deploys to production has
access to a different set of

production assets.

A fourth headless user

who has only read access
to the artifact repository.

Essentially, at no time, can Team A accidentally
step over Team B’s assets, and vice versa.

Source: CloudBees, Inc.

17

https://www.cloudbees.com/cloudbees-kube-cd
https://www.cloudbees.com/products/cloudbees-core

 » �Manual gates. While we know that manual gates are instituted to allow human intervention, it is
important to understand there are two kinds of manual gates.

Selective people are empowered to provide
human input to pipelines to perform
sensitive actions, especially in production
where customers may become affected.
The identities of these people are logged
by pipelines for traceability and auditability.
Moreover, automated manual gates should
not be abused to poll for long periods of
time, since this inflates test cycle time,
feature lead time and, eventually, time to
market.

Irrespective of what kind of gates we use, or
which method (or combination) of methods
we choose, the central idea is to gain
responsible speed through our pipelines,
and not suicidal speed.

GATE TYPE DESCRIPTION
Classic manual This type of gate creates disjointed pipelines. Let’s simplify and use the example

where one pipeline got split into two due to the presence of a manual gate.

 » Upstream pipeline #1 finishes.

 » �A human intervenes and performs some manual work.

 » �After manual inspection of the work results, downstream pipeline #2 is either:
 – Not kicked off, or
 – Manually kicked off.

Automated manual Automated manual gates can be programmatically introduced in pipelines to pause
and ask for human input. This prevents the pipeline from making one headless end-to-
end run that now has a coded gate.

 » Pipeline pauses and programmatically asks for input.

 » A human provides the input.

 » Depending on the human input, the same pipeline either:
 – Restarts from where it was paused, or
 – Aborts with appropriate notifications sent off.

18

Pipelines should be auditable production assets
Pipelines are classic examples of process as code, and
processes should be auditable. Hence, pipelines should be
auditable. Let’s explore a few aspects of pipeline audits.

 » �Pipeline infrastructure. To be auditable, pipelines
should be instituted as production assets with
production-grade hardware and network. Auditors,
both internal and external, should look at pipelines as
auditable assets, and should break out of old habits
of looking only into “blessed change management
servers” that are previously known to them.

 » �Pipeline logs. Pipelines, like any other application,
generate a wealth of information and data. This data
is transactional in nature and reflect a chain of events
that can be eventually traced back to commits in
version control. These pipeline transactions can also
be archived and aggregated to perform analytics to
help organizations make informed decisions. To enable
auditability and segregation of duties, pipeline logs are:

	 » �Configurable. An enumeration of verbosity levels
exist, like [Info, Warning, Error] and we can
switch between different levels, depending on
business requirements.

	 » �Access-controlled. Pre-defined sets of people
have access specific sets of logs and specific
sections inside those sets.

	 » �Timestamped. Each row in the log records
not just the activity but also the time it
happened.

	 » �Retained. Logs should be retained for
X months, per a log retention policy on
different pieces that constitute the pipeline.
For example, some engineers could have
built the pipeline, others could have
integrated tests with the pipeline and third-
party *aaS vendors could have provided the
infrastructure for the pipeline. Even though
there appears to be multiple owners, it
pays to have a single point of contact for
accountability. Ownership could be rotated,
as long as the person has the necessary
expertise to understand the nuances.

 » �Pipeline as an app. Pipelines are mission-critical
applications for organizations which release
quality and secure products to their customers
frequently and predictably. Just like any other
application, pipelines should follow the gold
standards of software development and delivery
and should be built as a twelve-factor application.
Hence, pipelines, like any other production asset,
should be released via continuous delivery/
deployment pipelines.

19

https://12factor.net/

Visualize software gates and pipelines
Pipeline visualization tools depict the state of products
flowing through registered pipelines. Visualization helps teams
understand not just their throughput but bottlenecks as well.

Additionally, different kinds of gates (for example, simple,
composite and weighted composite) when visualized add color
to understanding code promotion criteria. Visualizers reduce/
eliminate the cognitive and collaboration overhead.

There are three types of gates:

 » �Simple

 » �Composite

 » �Weighted composite

 » �Simple gates. Simple gates are linked to one KPI, for
example:

	 » �Number of test failures = 0

	 » �Percentage of code coverage >= X%

One important flaw is that in case the lone
KPI is biased, the entire gate gets biased.
For example, the number of releases per
sprint measures how fast we move bits
from point A to point B, but does not
reflect the business value achieved in
that sprint. Similarly, the number of tests
executed may not be a true reflection of
results as much as it is of an effort.

 » �Composite gates. Composite gates remove the
one critical deficiency of simple gates and this
helps automate the segregation of duties. To
avoid skewing on a single metric (that could be
championed by one influential person or group),
composite gates rely on a diverse portfolio of
metrics instead.

 �For example, let’s consider a couple of indices that
comprise a portfolio of metrics:

	 » �Code quality index = function of (cyclomatic
complexity, code duplication, unit test
coverage)

	 » �Stability index = function of (check in to go
live, number of escaped defects, customer
delight)

 �These indices will now be balanced uniformly
between the chosen set of metrics.

.

Pipeline deploys in Dev
Pipeline deploys in Stage

Pipeline deploys in Production

Pipeline failures due to Unit Tests
Pipeline failures due to Functional Tests

Pipeline failures due to Performance Tests
Pipeline failures due to Security Vulnerabilities

Stability Index = function
of (check in to go live,
of escaped defects,

customer delight)

Code Quality Index =
function of (cyclomatic

complexity, code duplication,
unit test coverage)

CheckIn2Dev
CheckIn2Stage

CheckIn2GoLive!

Business Value
per Sprint

Pipeline failures in Dev
Pipeline failures in Stage

Pipeline deploys in Production
of Escaped Defects

1

2

3

7

6

4

8

5

Pipeline deploys in Dev
Pipeline deploys in Stage

Pipeline deploys in Production

Pipeline failures due to Unit Tests
Pipeline failures due to Functional Tests

Pipeline failures due to Performance Tests
Pipeline failures due to Security Vulnerabilities

Stability Index = function
of (check in to go live,
of escaped defects,

customer delight)

Code Quality Index =
function of (cyclomatic

complexity, code duplication,
unit test coverage)

CheckIn2Dev
CheckIn2Stage

CheckIn2GoLive!

Business Value
per Sprint

Pipeline failures in Dev
Pipeline failures in Stage

Pipeline deploys in Production
of Escaped Defects

1

2

3

7

6

4

8

5

Source: CloudBees, Inc.Source: CloudBees, Inc.

20

 » �Weighted composite gates. What if you
don’t want the balance between the participating
metrics to be uniform? A weighted index helps
you put more emphasis on certain metrics over
others. For example, if you are a great believer of
cyclomatic complexity, you could deliberately let
it influence half of the overall index.

	 » �Code quality index = function of (50%
cyclomatic complexity, 25% code
duplication, 25% unit test coverage)

	 » �Stability index = function of (20% check in
to go live, 40% number of escaped defects,
40% customer delight)

Honor compliance
Governance is often open to interpretation and is
mistakenly used interchangeably with compliance. In
this section, we will hone in specifically on compliance
so that the differentiation is clear. Compliance means
an organization’s adherence to regulations, norms,
standards and other protocols related to its business.
Violations often result in legal punishment and/or fines,
along with PR damage and loss of brand equity.

 » �FISMA and NIST. Federal Information Systems
Act (FISMA) requires government agencies to
implement an information security program that
effectively manages risk. The National Institute
of Standards and Technology (NIST) is a non-
regulatory agency that has authored protocols
on how to comply with FISMA. Let’s study
how FISMA requirements are addressed by the
continuous governance tenets we discuss in
this eBook.

	 » �Maintain an inventory of information
systems. This aligns well with our
continuous governance tenet to register
pipeline metadata before accepting any
pipeline as legitimate.

	 » �Conduct continuous monitoring. This
aligns well with our requirement to perform
pipeline analytics at all times. The nuggets
of insights are then fed back into the
system to complete the feedback loop.
CloudBees DevOptics offers visibility
and insights to measure, manage and
optimize your software delivery and is well-
positioned to be a continuous monitor of
this kind.

	 » �Ensure the integrity, confidentiality and
availability of sensitive information. This
aligns well with our discussion on the
secure management of secrets, that is,
passwords, keys, certificates and similar
sensitive material.

 » �HIPAA. The Standards for Privacy of Individually
Identifiable Health Information (“Privacy Rule”)
establishes a set of national standards for the
protection of certain health information. The
U.S. Department of Health and Human Services
(HHS) issued the Privacy Rule to implement
the requirement of HIPAA. HIPAA standards
address the use and disclosure of individuals’
health information, called “protected health
information” by organizations subject to the
Privacy Rule. HIPAA also standardizes the
individuals’ privacy rights to understand and
control how their health information is used.

 �This aligns well with our discussion on protecting
consumer PII data from inadvertently appearing
in pipeline logs.

21

https://www.dhs.gov/fisma
https://www.nist.gov/
https://www.cloudbees.com/products/cloudbees-devoptics
https://www.hhs.gov
https://www.hhs.gov/hipaa/index.html

 » �PCI. The Payment Card Industry Data Security Standard (PCI DSS) is a
set of security standards designed to ensure that companies who accept,
process, store or transmit credit card information maintain a secure
environment.

 �We are in the era of e-commerce and this aligns well with our data
governance principle of protecting consumer financial data. Financial
data, such as payment-related information or account-related information,
cannot be exposed in pipeline logs or elsewhere. Note that the same
constraint applies just as much to the product flowing through the pipeline
as the pipeline itself.

 » �EU General Data Protection Regulation. The EU General Data Protection
Regulation (GDPR) is designed to harmonize data privacy laws across
Europe, protect and empower all EU citizens and reshape the way
organizations across the region approach data privacy.

 �GDPR redefined not just the data management process, but also the roles
and responsibilities of the C-Suite. The latter now must ensure that they
have watertight consent management processes in place, while requiring
effective data rights management systems to ensure they don’t lose their
most valuable asset – data.

 �From the perspective of continuous governance, this aligns with protecting
consumer data from being exposed in pipeline logs or elsewhere.

 » �Sarbanes-Oxley Act. In 2002, the United States Congress passed the
Sarbanes-Oxley Act (SOX) to protect shareholders and the general public
from accounting errors and fraudulent practices in organizations, and to
improve the accuracy of corporate disclosures. The act sets deadlines for
compliance and publishes rules on requirements. All public companies now
must comply with SOX, both on the financial side and on the IT side. The
way in which IT departments store corporate electronic records changed
as a result of SOX. While the act does not specify how a business should
store records or establish a set of business practices, it does define which
records should be stored and the length of time for the storage.

 �To comply with SOX, corporations must save all business records, including
electronic records and electronic messages for a certain period of time. This
aligns well with our continuous governance protocol of establishing:

	 » � �Artifact retention policies for development/test and staging
environments and particularly for production.

	 » � �Filing change requests automatically through pipelines before
deploying in production (and sometimes even staging) and thereby
create an audit trail.

22

https://www.pcisecuritystandards.org/document_library
https://eugdpr.org/
https://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

Governance Engine
Now that there is an understanding of the continuous governance tenets, the next
step is to deliver a model the industry can follow. In an ideal world, a standardized
governance engine integrates with all pipelines to ensure they are operating in a
governed manner. Which brings us back to the original question: Who governs
governance? CloudBees is an industry leader in DevOps and continuous everything
and is in a unique position to author governance protocols that encompass auditors,
risk, compliance and engineering.

In the following figure, we illustrate the architecture of a governance engine. The
engine feeds off the data emitted by pipelines, assesses the results and then feeds
back into the pipelines to close the feedback cycle. If the assessment is positive, pre-
configured software gates allow pipelines to promote code from one stage to the next.
If the assessment is negative, alerts are generated and notifications sent to potential
culprits. Repeat offenders are required to undergo rigorous training to help eliminate
the root causes of failures.

Assessment data emitted by the governance engine is pumped into a reservoir for
analytical processing. The nuggets of insights mined thereafter can then enable the
organization to make informed data-driven decisions.

22

Integration

Testing

Delivery

Deployment

Analytics

Infra Tests Code Product Profit

Assess

Data Pump
Analytics and Insights

SuccessFailureOffenders and
Repeat Offenders

Source: CloudBees, Inc.

https://www.cloudbees.com/

Common Misconceptions
There are some misconceptions associated with continuous governance.
This section aims to bust as many myths as possible to reduce friction
during execution.

Agile rests on collaboration principles, and hence we should govern
in a collaborative manner. Apart from software, agile has eaten the
world. While it is important to consider everyone’s inputs, it is essential
to keep the brightest and non-political minds as the governing body.
Also, this body should govern without being paranoid. This enhances
accountability and positions the organization for success.

Governance is superfluous, since we want our teams to be self-
organizing. Another agile misconception. Teams can self-organize while
being governed. In fact, with proper guardrails, teams can avoid shooting
themselves in the foot, while releasing software frequently.

Governance is the same as compliance. No, it is different. In this eBook,
we discussed compliance as one of the many tenets of governance.

Governance applies to large organizations only. Governance applies to
organizations of all sizes. Large organizations might be under stricter
regulations but that should not discourage small and mid-sized players
from fastening their seat belts.

Continuous governance applies to software only. It applies to all
product types, like software, firmware, embedded systems and IoT.
Software is further ahead than the others, but the gap is narrowing as
we write this eBook.

23

To power the continuous economy is no mean feat! CloudBees is strategically
positioned to drive continuous everything and has taken a definitive stand
on continuous governance. While continuous integration, continuous testing,
continuous delivery, continuous deployment and continuous analytics are seen
as the formative pillars of continuous everything, continuous governance gets
sidelined more often than not. Our lives and not just our work are tied to the
success of the continuous economy and we don’t want to cut corners on what’s
the right thing to do and how to do it.

Continuous governance has predictably emerged as the bone of contention since
the undertaker of governance gains superiority over the governed. Organizations
have been torn by powerful factions aspiring to dominate others. However, the
solutions they provide are often political and not technical. They also mandate
large departments of personnel to do manual verifications. Not only is this manual
solution error-prone, it is also costly since in general, people are more expensive
than tools.

The bottom line is that continuous governance is overdue. The industry is paying
hefty penalties in terms of political divide, cybersecurity threats, privacy concerns
and misconstrued separation of duties that lead to disrupted lives and loss of
jobs. At CloudBees, we think we should remove the duct tape and introduce
ironclad scientific solutions. As the market leader, we should not just create
pockets of excellent, but scale those automated continuous governance recipes
across the globe.

We’ve won some governance battles in the past. It’s now time to win the war.
Let’s be a practitioner!

Conclusion

24

We’ve won some governance battles in the past.
It’s now time to win the war. Let’s be a practitioner!

About
CloudBees is powering the continuous economy by building the world’s first
end-to-end system for automating software delivery, the CloudBees Suite.
The CloudBees Suite builds on emerging DevOps practices and continuous
integration (CI) and continuous delivery (CD) automation adding a layer of
governance, visibility and insights necessary to achieve optimum efficiency
and control new risks. As every company in the world is now a software
company, this new automated software delivery system will become the
most mission-critical business system in the modern enterprise. As today’s
clear leader in continuous CI/CD, CloudBees is uniquely positioned to
define and lead the automated software delivery category. CloudBees
puts companies on the fastest path to transforming great ideas into great
software and returning value to the business more quickly.

Backed by Matrix Partners, Lightspeed Venture Partners, Verizon Ventures,
Golub Capital and Delta-v Capital, CloudBees was founded in 2010
by former JBoss CTO Sacha Labourey and an elite team of continuous
integration, continuous delivery and DevOps professionals. Follow
CloudBees on Twitter, Facebook, LinkedIn and Google+.

The registered trademark Jenkins® is used pursuant to a sublicense from the Jenkins project and Software in the Public Interest, Inc. Read more at: www.cloudbees.com/jenkins/about

© 2018 CloudBees, Inc. CloudBees and CloudBees DevOptics are registered trademarks and CloudBees Core, CloudBees CodeShip, CloudBees Jenkins Enterprise, CloudBees Jenkins
Platform and DEV@cloud are trademarks of CloudBees. Other product or brand names may be trademarks or registered trademarks of their respective holders. 1018v00

https://twitter.com/cloudbees
https://www.facebook.com/CloudBees
https://www.linkedin.com/company/cloudbees/
https://plus.google.com/+CloudbeesHive
http://www.cloudbees.com/jenkins/about

